The Trending With Impact series highlights Aging (Aging-US) publications that attract higher visibility among readers around the world online, in the news, and on social media—beyond normal readership levels. Look for future science news about the latest trending publications here, and at Aging-US.com.
—
Is it possible to predict how long you will live based on your genetics, lifestyle and other traits? Will you age quickly or slowly? In a new study, a team of researchers—from the National Institutes of Health’s National Institute on Aging, University of California San Diego, University of Michigan, Consiglio Nazionale delle Ricerche, Azienda Sanitaria di Firenze, and ViQi, Inc.—sought to answer these questions by developing a novel framework designed to estimate human physiological age and aging rate. Their trending paper was published by Aging (Aging-US) in October 2021, and entitled, “Predicting physiological aging rates from a range of quantitative traits using machine learning”.
“We present machine learning as a promising framework for measuring physiological age from broad-ranging physiological, cognitive, and molecular traits.”
Machine Learning
Machine learning is an important development in computer science that uses artificial intelligence. Algorithms and data (figured and input by human intelligence) are programed to automatically learn and improve through experience and new data. Machine learning approaches allow researchers to build mathematical models onto training data to predict target variables—target variables including human physiological age and rate of aging.
“Here we use a machine learning approach with a broad range of biochemical and physiological traits including blood phenotypes (e.g., high-density lipoprotein), cardiovascular functions (e.g., pulse wave velocity) and psychological traits (e.g., neuroticism) as main groups from the SardiNIA longitudinal study of aging [48, 49] to estimate human physiological age, a metric for phenotypic and functional age progression [7].”
Subjects and Traits
Two very interesting study populations were included in this particular aging model. People living in Sardinia—an island off the coast of Italy and one of the first identified “Blue Zones”—are well-known for their long lives. They are currently contributing to a large longitudinal study on human aging, known as the SardiNIA Project. Data from the cohort in the SardiNIA Project were used to develop the aging model in the current study.
“Funded by the National Institute on Aging in 2001, the SardiNIA Project (age range 14.0 to 101.3 years, with a mean of 43.7 years; 57% female) is a longitudinal study of human aging on the island of Sardinia, which is notable for its long-lived population [48, 49].”
The second cohort included in the current study was collected from the InCHIANTI study. Participants in this longitudinal population-based study were predominantly older adults living in Tuscany, Italy. After collecting the initial datasets from both cohorts, the researchers filtered the datasets using a “cleaning” strategy they developed. After cleaning, the number of subjects in the study were reduced from 6165 to 4817, and the number of traits included in the algorithms were reduced from 183 to 148. The researchers then configured the selected subjects and traits using computational algorithms and machine learning. Traits were ranked based on importance and weighted accordingly using algorithms the researchers developed. Study methods and materials were detailed thoroughly in the paper and its supplemental materials.
Conclusion
The machine learning strategy the team developed yielded a promising new composite metric and allowed them to closely predict chronological age. After they effectively estimated physiological age and validated their results, the researchers then used the ratio of physiological and chronological age to determine physiological aging rate, or PAR. Interestingly, the researchers observed that PAR was highly correlated with the epigenetic aging rate (EAR), which is a DNA methylation-based measure of aging. In addition, the researchers demonstrated that individuals with lower PARs outlived individuals with higher PARs. PAR may be a new proxy for an underlying whole-body aging mechanism.
“The efficacy of treatments aimed at slowing the aging process has traditionally been evaluated using individual biomarkers or limited collections of related biomarkers. Our current study has shown that PAR is a significant predictor for survival and correlated with epigenetic aging rate, providing evidence for a good measurement of ‘aging’.”
Click here to read the full research paper published by Aging (Aging-US).
WATCH: AGING VIDEOS ON LABTUBE
—
Aging (Aging-US) is an open-access journal that publishes research papers monthly in all fields of aging research and other topics. These papers are available to read at no cost to readers on Aging-us.com. Open-access journals offer information that has the potential to benefit our societies from the inside out and may be shared with friends, neighbors, colleagues, and other researchers, far and wide.
For media inquiries, please contact [email protected].